在Docker中跑Hadoop与镜像制作

  重复造轮子,这里使用重新打包生成一个基于Docker的Hadoop镜像;   Hadoop集群依赖的软件分别为:jdk、ssh等,所以只要这两项还有Hadoop相关打包进镜像中去即可; 配置文件准备 1、Hadoop相关配置文件:core-site.xml、hdfs-site.xml、mapr

反向传播算法—从四个基本公式说起

反向传播四公式:   反向传播的最终目的是求得使代价C最小时w、b的最佳值,为了方便计算引入了神经单元误差δ_j^l,其定义为误差C关于某个神经单元z的关系;   其定义如上所示,某神经元误差为代价C(总误差)关于z的偏导数,其中l为神经网络的层数,j为第几个神经元;   这里的代价函数(

线性代数回头看——线性方程组

1、线性方程组概述 **线性方程组:**包含未知数x1,x2,x3....xn的线性方程   其中b与系数a1,a2,a3...an是实数或复数,通常是已知的;下标n可以为任意数;线程方程组为由一个或几个包含相同变量x1,x2,x3....xn的线性方程组组成; 线性方程组的解分为相容、与不相容两

线性回归——最大似然法

似然函数   似然函数与概率非常类似但又有根本的区别,概率为在某种条件(参数)下预测某事件发生的可能性;而似然函数与之相反为已知该事件的情况下推测出该事件发生时的条件(参数);所以似然估计也称为参数估计,为参数估计中的一种算法; 下面先求抛硬币的似然函数,然后再使用似然函数算出线性回归的参数;   

线性回归——梯度下降法_实例

  上篇文章介绍了梯度下降法在线性回归中的相关理论与证明,这里使用程序实例代码方式看梯度下降法是怎样一步一步下降求出最优解的; X = [1 4;2 5;5 1;4 2]; y = [19;26;19;20]; m = length(y); alpha = 0.002; %步长 num_it

线性回归——梯度下降法

  前面的文章讲了使用最小二乘法来求线性回归损失函数的最优解,最小二乘法为直接对梯度求导找出极值,为非迭代法;而本篇文章了使用一个新的方法来求损失函数的极值:梯度下降法(Gradient Descendent, GD),梯度下降法为最优化算法通常用于求解函数的极值,梯度下降法为迭代法,给定一个β在梯

线性回归——最小二乘法(二)

  上篇文章中介绍了单变量线性回归,为什么说时单变量呢,因为它只有单个特征,其实在很多场景中只有单各特征时远远不够的,当存在多个特征时,我们再使用之前的方法来求特征系数时是非常麻烦的,需要一个特征系数一个偏导式,而却最要命的时特性的增长时及其迅猛的,几十、几百、几千…… 单变量线性回归: 多变量线性

线性回归——最小二乘法_实例(一)

  上篇文章介绍了最小二乘法的理论与证明、计算过程,这里给出两个最小二乘法的计算程序代码; Octave代码 clear all;close all; % 拟合的数据集 x = [2;6;9;13]; y = [4;8;12;21]; % 数据长度 N = length(x); % 3

线性回归——最小二乘法(一)

  相信学过数理统计的都学过线性回归(linear regression),本篇文章详细将讲解单变量线性回归并写出使用最小二乘法(least squares method)来求线性回归损失函数最优解的完整过程,首先推导出最小二乘法,后用最小二乘法对一个简单数据集进行线性回归拟合; 线性回归   线性

线性代数回顾:矩阵运算

  矩阵为线性代数中的重点,而矩阵运算就是矩阵的基础,这篇文章主要是回顾矩阵运算;   矩阵基本运算:加法、减法、数乘、乘法、转置等 矩阵加法      矩阵加法规则为每个矩阵对应的元素相加,当且仅当两个矩阵具有相同的维数矩阵加法才有定义; 1、加法规则 示例 矩阵减法   矩阵减法规则与矩
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×